Calculating ...

Press ESC to cancel.

Paper details

Reference Molecular and physiological approaches to understand the ecology of methanol degradation during the biofiltration of air streams. Barcón T, Alonso-Gutiérrez J, Omil F. Chemosphere. 2012.
Abstract A 13.4 L biofilter treating an off-gas stream supplemented with methanol under two different situations was studied in terms of MeOH removal efficiency, microbial ecology and odor removal. During Period 1 (P1) the reactor was packed with wood bark chips with no pH control, treating an off-gas resulting from the aerobic chamber of a membrane biological reactor treating sewage and located outdoor, whereas during Period 2 (P2) a compressed air stream fed with MeOH was treated using PVC rings and maintaining pH at neutral values. Both systems operated at 96 g MeOH m(-3) h(-1) achieving removal efficiencies of around 90% during P1 and 99.9% during P2. The relative activity of biomass developed in both systems was assessed using respirometric analysis with samples obtained from both biofilms. Higher biomass activity was obtained during P2 (0.25-0.35 kg MeOH kg(-1) VSS d(-1)) whereas 1.1 kg MeOH kg(-1) VSS d(-1) was obtained in the case of P1. The application of molecular and microscopic techniques showed that the eukaryotes were predominant during P1, being the yeast Candida boidinii the most abundant microorganism. A specific Fluorescence in situ hybridization probe was designed for C. boidinii and tested successfully. As a result of the neutral pH, a clear predominance of prokaryotes was detected during P2. Interestingly, some anaerobic bacteria were detected such as Desulfovibrio, Desulfobacteraceae species and also some archaea such as Methanosarcina.
Pubmed ID 22386929
Probes
Cboid198
<< >>