Calculating ...

Press ESC to cancel.

Paper details

Reference Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Hesselmann RP, Werlen C, Hahn D, van der Meer JR, Zehnder AJ. Systematic and applied microbiology. 1999.
Abstract Activated sludge communities which performed enhanced biological phosphate removal (EBPR) were phylogenetically analyzed by 16S rRNA-targeted molecular methods. Two anaerobic-aerobic sequencing batch reactors were operated with two different carbon sources (acetate vs. a complex mixture) for three years and showed anaerobic-aerobic cycles of polyhydroxybutyrate- (PHB) and phosphate-accumulation characteristic for EBPR-systems. In situ hybridization showed that the reactor fed with the acetate medium was dominated by bacteria phylogenetically related to the Rhodocyclus-group within the beta-Proteobacteria (81% of DAPI-stained cells). The reactor with the complex medium was also predominated by this phylogenetic group albeit at a lesser extent (23% of DAPI-stained cells). More detailed taxonomic information on the dominant bacteria in the acetate-reactor was obtained by constructing clone libraries of 16S rDNA fragments. Two different types of Rhodocyclus-like clones (R1 and R6) were retrieved. Type-specific in situ hybridization and direct rRNA-sequencing revealed that R6 was the type of the dominant bacteria. Staining of intracellular polyphosphate- and PHB-granules confirmed that the R6-type bacterium accumulates PHB and polyphosphate just as predicted by the metabolic models for EBPR. High similarities to 16S rDNA fragments from other EBPR-sludges suggest that R6-type organisms were present and may play an important role in EBPR in general. Although the R6-type bacterium is closely related to the genus Rhodocyclus, it did not grow phototrophically. Therefore, we propose a provisional new genus and species Candidatus Accumulibacter phosphatis.
Pubmed ID 10553298