Calculating ...

Press ESC to cancel.

Paper details

Reference Group-Specific 16S rRNA-Targeted Oligonucleotide Probes To Identify Thermophilic Bacteria in Marine Hydrothermal Vents. Harmsen H, Prieur D, Jeanthon C. Applied and environmental microbiology. 1997.
Abstract Four 16S rRNA-targeted oligonucleotide probes were designed for the detection of thermophilic members of the domain Bacteria known to thrive in marine hydrothermal systems. We developed and characterized probes encompassing most of the thermophilic members of the genus Bacillus, most species of the genus Thermus, the genera Thermotoga and Thermosipho, and the Aquificales order. The temperature of dissociation of each probe was determined. Probe specificities to the target groups were demonstrated by whole-cell and dot blot hybridization against a collection of target and nontarget rRNAs. Whole-cell hybridizations with the specific probes were performed on cells extracted from hydrothermal vent chimneys. One of the samples contained cells that hybridized to the probe specific to genera Thermotoga and Thermosipho. No positive signals could be detected in the samples tested with the probes whose specificities encompassed either the genus Thermus or the thermophilic members of the genus Bacillus. However, when simultaneous hybridizations with the probe specific to the order Aquificales and a probe specific to the domain Bacteria (R. I. Amann, B. Binder, R. J. Olson, S. W. Chisholm, R. Devereux, and D. A. Stahl, Appl. Environ. Microbiol. 56:1919-1925, 1990) were performed on cells extracted from the top and exterior subsamples of chimneys, positive signals were obtained from morphologically diverse bacteria representing about 40% of the bacterial population. Since specificity studies also revealed that the bacterial probe did not hybridize with the members of the order Aquificales, the detected cells may therefore correspond to a new type of bacteria. One of the observed morphotypes was similar to that of a strictly anaerobic autotrophic sulfur-reducing strain that we isolated from the chimney samples. This work demonstrates that application of whole-cell hybridization with probes specific for different phylogenetic levels is a useful tool for detailed studies of hydrothermal vent microbial ecology.
Pubmed ID 16535717